Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Emerg Infect Dis ; 29(6): 1223-1227, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320019

ABSTRACT

Anthropogenic transmission of SARS-CoV-2 to pet cats highlights the importance of monitoring felids for exposure to circulating variants. We tested cats in the United Kingdom for SARS-CoV-2 antibodies; seroprevalence peaked during September 2021-February 2022. The variant-specific response in cats trailed circulating variants in humans, indicating multiple human-to-cat transmissions over a prolonged period.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cats , Animals , Seroepidemiologic Studies , COVID-19/epidemiology , COVID-19/veterinary , Antibodies, Viral , United Kingdom/epidemiology
2.
EClinicalMedicine ; 58: 101926, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2299638

ABSTRACT

Background: Few studies have compared SARS-CoV-2 vaccine immunogenicity by ethnic group. We sought to establish whether cellular and humoral immune responses to SARS-CoV-2 vaccination differ according to ethnicity in UK Healthcare workers (HCWs). Methods: In this cross-sectional analysis, we used baseline data from two immunological cohort studies conducted in HCWs in Leicester, UK. Blood samples were collected between March 3, and September 16, 2021. We excluded HCW who had not received two doses of SARS-CoV-2 vaccine at the time of sampling and those who had serological evidence of previous SARS-CoV-2 infection. Outcome measures were SARS-CoV-2 spike-specific total antibody titre, neutralising antibody titre and ELISpot count. We compared our outcome measures by ethnic group using univariable (t tests and rank-sum tests depending on distribution) and multivariable (linear regression for antibody titres and negative binomial regression for ELISpot counts) tests. Multivariable analyses were adjusted for age, sex, vaccine type, length of interval between vaccine doses and time between vaccine administration and sample collection and expressed as adjusted geometric mean ratios (aGMRs) or adjusted incidence rate ratios (aIRRs). To assess differences in the early immune response to vaccination we also conducted analyses in a subcohort who provided samples between 14 and 50 days after their second dose of vaccine. Findings: The total number of HCWs in each analysis were 401 for anti-spike antibody titres, 345 for neutralising antibody titres and 191 for ELISpot. Overall, 25.4% (19.7% South Asian and 5.7% Black/Mixed/Other) were from ethnic minority groups. In analyses including the whole cohort, neutralising antibody titres were higher in South Asian HCWs than White HCWs (aGMR 1.47, 95% CI [1.06-2.06], P = 0.02) as were T cell responses to SARS-CoV-2 S1 peptides (aIRR 1.75, 95% CI [1.05-2.89], P = 0.03). In a subcohort sampled between 14 and 50 days after second vaccine dose, SARS-CoV-2 spike-specific antibody and neutralising antibody geometric mean titre (GMT) was higher in South Asian HCWs compared to White HCWs (9616 binding antibody units (BAU)/ml, 95% CI [7178-12,852] vs 5888 BAU/ml [5023-6902], P = 0.008 and 2851 95% CI [1811-4487] vs 1199 [984-1462], P < 0.001 respectively), increments which persisted after adjustment (aGMR 1.26, 95% CI [1.01-1.58], P = 0.04 and aGMR 2.01, 95% CI [1.34-3.01], P = 0.001). SARS-CoV-2 ELISpot responses to S1 and whole spike peptides (S1 + S2 response) were higher in HCWs from South Asian ethnic groups than those from White groups (S1: aIRR 2.33, 95% CI [1.09-4.94], P = 0.03; spike: aIRR, 2.04, 95% CI [1.02-4.08]). Interpretation: This study provides evidence that, in an infection naïve cohort, humoral and cellular immune responses to SARS-CoV-2 vaccination are stronger in South Asian HCWs than White HCWs. These differences are most clearly seen in the early period following vaccination. Further research is required to understand the underlying mechanisms, whether differences persist with further exposure to vaccine or virus, and the potential impact on vaccine effectiveness. Funding: DIRECT and BELIEVE have received funding from UK Research and Innovation (UKRI) through the COVID-19 National Core Studies Immunity (NCSi) programme (MC_PC_20060).

4.
Nat Rev Microbiol ; 2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2229120

ABSTRACT

Monoclonal antibodies (mAbs) offer a treatment option for individuals with severe COVID-19 and are especially important in high-risk individuals where vaccination is not an option. Given the importance of understanding the evolution of resistance to mAbs by SARS-CoV-2, we reviewed the available in vitro neutralization data for mAbs against live variants and viral constructs containing spike mutations of interest. Unfortunately, evasion of mAb-induced protection is being reported with new SARS-CoV-2 variants. The magnitude of neutralization reduction varied greatly among mAb-variant pairs. For example, sotrovimab retained its neutralization capacity against Omicron BA.1 but showed reduced efficacy against BA.2, BA.4 and BA.5, and BA.2.12.1. At present, only bebtelovimab has been reported to retain its efficacy against all SARS-CoV-2 variants considered here. Resistance to mAb neutralization was dominated by the action of epitope single amino acid substitutions in the spike protein. Although not all observed epitope mutations result in increased mAb evasion, amino acid substitutions at non-epitope positions and combinations of mutations also contribute to evasion of neutralization. This Review highlights the implications for the rational design of viral genomic surveillance and factors to consider for the development of novel mAb therapies.

5.
EBioMedicine ; 87: 104402, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2178115

ABSTRACT

BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Follow-Up Studies , Vaccination , Hospitalization , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
6.
Viruses ; 14(8)2022 08 04.
Article in English | MEDLINE | ID: covidwho-2024282

ABSTRACT

The rapid transmission of measles poses a great challenge for measles elimination. Thus, rapid testing is required to screen the health status in the population during measles outbreaks. A pseudotype-based virus neutralisation assay was used to measure neutralising antibody titres in serum samples collected from healthcare workers in Sheffield during the measles outbreak in 2016. Vesicular stomatitis virus (VSV) pseudotypes bearing the haemagglutinin and fusion glycoproteins of measles virus (MeV) and carrying a luciferase marker gene were prepared; the neutralising antibody titre was defined as the dilution resulting in 90% reduction in luciferase activity. Spearman's correlation coefficients between IgG titres and neutralising antibody levels ranged from 0.40 to 0.55 (p < 0.05) or from 0.71 to 0.79 (p < 0.0001) when the IgG titres were obtained using different testing kits. In addition, the currently used vaccine was observed to cross-neutralise most circulating MeV genotypes. However, the percentage of individuals being "well-protected" was lower than 95%, the target rate of vaccination coverage to eliminate measles. These results demonstrate that the level of clinical protection against measles in individuals could be inferred by IgG titre, as long as a precise correlation has been established between IgG testing and neutralisation assay; moreover, maintaining a high vaccination coverage rate is still necessary for measles elimination.


Subject(s)
Antibodies, Neutralizing , Measles , Antibodies, Viral , Disease Outbreaks/prevention & control , Health Personnel , Humans , Immunoglobulin G , Luciferases , Measles/epidemiology , Measles/prevention & control , Measles Vaccine , Vaccination
7.
Nat Microbiol ; 7(8): 1161-1179, 2022 08.
Article in English | MEDLINE | ID: covidwho-1921616

ABSTRACT

Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , BNT162 Vaccine , Humans , Membrane Glycoproteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/metabolism , Virus Internalization
8.
Front Immunol ; 13: 882515, 2022.
Article in English | MEDLINE | ID: covidwho-1903016

ABSTRACT

Children and adolescents generally experience mild COVID-19. However, those with underlying physical health conditions are at a significantly increased risk of severe disease. Here, we present a comprehensive analysis of antibody and cellular responses in adolescents with severe neuro-disabilities who received COVID-19 vaccination with either ChAdOx1 (n=6) or an mRNA vaccine (mRNA-1273, n=8, BNT162b2, n=1). Strong immune responses were observed after vaccination and antibody levels and neutralisation titres were both higher after two doses. Both measures were also higher after mRNA vaccination and were further enhanced by prior natural infection where one vaccine dose was sufficient to generate peak antibody response. Robust T-cell responses were generated after dual vaccination and were also higher following mRNA vaccination. Early T-cells were characterised by a dominant effector-memory CD4+ T-cell population with a type-1 cytokine signature with additional production of IL-10. Antibody levels were well-maintained for at least 3 months after vaccination and 3 of 4 donors showed measurable neutralisation titres against the Omicron variant. T-cell responses also remained robust, with generation of a central/stem cell memory pool and showed strong reactivity against Omicron spike. These data demonstrate that COVID-19 vaccines display strong immunogenicity in adolescents and that dual vaccination, or single vaccination following prior infection, generate higher immune responses than seen after natural infection and develop activity against Omicron. Initial evidence suggests that mRNA vaccination elicits stronger immune responses than adenoviral delivery, although the latter is also higher than seen in adult populations. COVID-19 vaccines are therefore highly immunogenic in high-risk adolescents and dual vaccination might be able to provide relative protection against the Omicron variant that is currently globally dominant.


Subject(s)
COVID-19 Vaccines , COVID-19 , 2019-nCoV Vaccine mRNA-1273 , Adolescent , Adult , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Child , Humans , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
9.
Nat Immunol ; 23(1): 40-49, 2022 01.
Article in English | MEDLINE | ID: covidwho-1585824

ABSTRACT

SARS-CoV-2 infection is generally mild or asymptomatic in children but a biological basis for this outcome is unclear. Here we compare antibody and cellular immunity in children (aged 3-11 years) and adults. Antibody responses against spike protein were high in children and seroconversion boosted responses against seasonal Beta-coronaviruses through cross-recognition of the S2 domain. Neutralization of viral variants was comparable between children and adults. Spike-specific T cell responses were more than twice as high in children and were also detected in many seronegative children, indicating pre-existing cross-reactive responses to seasonal coronaviruses. Importantly, children retained antibody and cellular responses 6 months after infection, whereas relative waning occurred in adults. Spike-specific responses were also broadly stable beyond 12 months. Therefore, children generate robust, cross-reactive and sustained immune responses to SARS-CoV-2 with focused specificity for the spike protein. These findings provide insight into the relative clinical protection that occurs in most children and might help to guide the design of pediatric vaccination regimens.


Subject(s)
Antibodies, Viral/immunology , Coronavirus 229E, Human/immunology , Coronavirus OC43, Human/immunology , Cross Protection/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adaptive Immunity/immunology , Adult , Antibodies, Neutralizing/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Humans
10.
PLoS Pathog ; 17(12): e1010022, 2021 12.
Article in English | MEDLINE | ID: covidwho-1546978

ABSTRACT

Vaccines are proving to be highly effective in controlling hospitalisation and deaths associated with SARS-CoV-2 infection but the emergence of viral variants with novel antigenic profiles threatens to diminish their efficacy. Assessment of the ability of sera from vaccine recipients to neutralise SARS-CoV-2 variants will inform the success of strategies for minimising COVID19 cases and the design of effective antigenic formulations. Here, we examine the sensitivity of variants of concern (VOCs) representative of the B.1.617.1 and B.1.617.2 (first associated with infections in India) and B.1.351 (first associated with infection in South Africa) lineages of SARS-CoV-2 to neutralisation by sera from individuals vaccinated with the BNT162b2 (Pfizer/BioNTech) and ChAdOx1 (Oxford/AstraZeneca) vaccines. Across all vaccinated individuals, the spike glycoproteins from B.1.617.1 and B.1.617.2 conferred reductions in neutralisation of 4.31 and 5.11-fold respectively. The reduction seen with the B.1.617.2 lineage approached that conferred by the glycoprotein from B.1.351 (South African) variant (6.29-fold reduction) that is known to be associated with reduced vaccine efficacy. Neutralising antibody titres elicited by vaccination with two doses of BNT162b2 were significantly higher than those elicited by vaccination with two doses of ChAdOx1. Fold decreases in the magnitude of neutralisation titre following two doses of BNT162b2, conferred reductions in titre of 7.77, 11.30 and 9.56-fold respectively to B.1.617.1, B.1.617.2 and B.1.351 pseudoviruses, the reduction in neutralisation of the delta variant B.1.617.2 surpassing that of B.1.351. Fold changes in those vaccinated with two doses of ChAdOx1 were 0.69, 4.01 and 1.48 respectively. The accumulation of mutations in these VOCs, and others, demonstrate the quantifiable risk of antigenic drift and subsequent reduction in vaccine efficacy. Accordingly, booster vaccines based on updated variants are likely to be required over time to prevent productive infection. This study also suggests that two dose regimes of vaccine are required for maximal BNT162b2 and ChAdOx1-induced immunity.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2/immunology , Vaccine Efficacy , Antigenic Drift and Shift/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/mortality , COVID-19/prevention & control , HEK293 Cells , Humans
11.
PLoS Pathog ; 17(9): e1009929, 2021 09.
Article in English | MEDLINE | ID: covidwho-1430555

ABSTRACT

Remdesivir (RDV), a broadly acting nucleoside analogue, is the only FDA approved small molecule antiviral for the treatment of COVID-19 patients. To date, there are no reports identifying SARS-CoV-2 RDV resistance in patients, animal models or in vitro. Here, we selected drug-resistant viral populations by serially passaging SARS-CoV-2 in vitro in the presence of RDV. Using high throughput sequencing, we identified a single mutation in RNA-dependent RNA polymerase (NSP12) at a residue conserved among all coronaviruses in two independently evolved populations displaying decreased RDV sensitivity. Introduction of the NSP12 E802D mutation into our SARS-CoV-2 reverse genetics backbone confirmed its role in decreasing RDV sensitivity in vitro. Substitution of E802 did not affect viral replication or activity of an alternate nucleoside analogue (EIDD2801) but did affect virus fitness in a competition assay. Analysis of the globally circulating SARS-CoV-2 variants (>800,000 sequences) showed no evidence of widespread transmission of RDV-resistant mutants. Surprisingly, we observed an excess of substitutions in spike at corresponding sites identified in the emerging SARS-CoV-2 variants of concern (i.e., H69, E484, N501, H655) indicating that they can arise in vitro in the absence of immune selection. The identification and characterisation of a drug resistant signature within the SARS-CoV-2 genome has implications for clinical management and virus surveillance.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus RNA-Dependent RNA Polymerase/genetics , Drug Resistance, Microbial/genetics , SARS-CoV-2/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Biological Evolution , Chlorocebus aethiops , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells
12.
Vet Rec ; 188(8): e247, 2021 04.
Article in English | MEDLINE | ID: covidwho-1198417

ABSTRACT

OBJECTIVES: The aim of the study was to find evidence of SARS-CoV-2 infection in UK cats. DESIGN: Tissue samples were tested for SARS-CoV-2 antigen using immunofluorescence and for viral RNA by in situ hybridisation. A set of 387 oropharyngeal swabs that had been submitted for routine respiratory pathogen testing was tested for SARS-CoV-2 RNA using reverse transcriptase quantitative PCR. RESULTS: Lung tissue collected post-mortem from cat 1 tested positive for both SARS-CoV-2 nucleocapsid antigen and RNA. SARS-CoV-2 RNA was detected in an oropharyngeal swab collected from cat 2 that presented with rhinitis and conjunctivitis. High throughput sequencing of the viral genome revealed five single nucleotide polymorphisms (SNPs) compared to the nearest UK human SARS-CoV-2 sequence, and this human virus contained eight SNPs compared to the original Wuhan-Hu-1 reference sequence. An analysis of the viral genome of cat 2 together with nine other feline-derived SARS-CoV-2 sequences from around the world revealed no shared cat-specific mutations. CONCLUSIONS: These findings indicate that human-to-cat transmission of SARS-CoV-2 occurred during the COVID-19 pandemic in the UK, with the infected cats developing mild or severe respiratory disease. Given the ability of the new coronavirus to infect different species, it will be important to monitor for human-to-cat, cat-to-cat and cat-to-human transmission.


Subject(s)
COVID-19/veterinary , Cat Diseases/virology , Lung/virology , SARS-CoV-2/isolation & purification , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Cats , Female , Humans , RNA, Viral , SARS-CoV-2/genetics , United Kingdom/epidemiology
13.
J Infect Dis ; 223(6): 971-980, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1155782

ABSTRACT

Identifying drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and quantifying population immunity is crucial to prepare for future epidemics. We performed a serial cross-sectional serosurvey throughout the first pandemic wave among patients from the largest health board in Scotland. Screening of 7480 patient serum samples showed a weekly seroprevalence ranging from 0.10% to 8.23% in primary and 0.21% to 17.44% in secondary care, respectively. Neutralization assays showed that highly neutralizing antibodies developed in about half of individuals who tested positive with enzyme-linked immunosorbent assay, mainly among secondary care patients. We estimated the individual probability of SARS-CoV-2 exposure and quantified associated risk factors. We show that secondary care patients, male patients, and 45-64-year-olds exhibit a higher probability of being seropositive. The identification of risk factors and the differences in virus neutralization activity between patient populations provided insights into the patterns of virus exposure during the first pandemic wave and shed light on what to expect in future waves.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/diagnosis , COVID-19/epidemiology , Cell Line , Cross-Sectional Studies , Delivery of Health Care , Demography , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunity , Male , Middle Aged , Pandemics , Risk Factors , Scotland/epidemiology , Seroepidemiologic Studies , Young Adult
14.
Pept Sci (Hoboken) ; 113(4): e24217, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1014097

ABSTRACT

COVID-19 is caused by a novel coronavirus called severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). Virus cell entry is mediated through a protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (ACE2). A series of stapled peptide ACE2 peptidomimetics based on the ACE2 interaction motif were designed to bind the coronavirus S-protein RBD and inhibit binding to the human ACE2 receptor. The peptidomimetics were assessed for antiviral activity in an array of assays including a neutralization pseudovirus assay, immunofluorescence (IF) assay and in-vitro fluorescence polarization (FP) assay. However, none of the peptidomimetics showed activity in these assays, suggesting that an enhanced binding interface is required to outcompete ACE2 for S-protein RBD binding and prevent virus internalization.

SELECTION OF CITATIONS
SEARCH DETAIL